
THE APPLICABILITY OF SAINT-VENANT’S
PRINCIPLE TO MONOCOQUE STRUCTURES

B. V. Nerubailo, N. V. Zotova,
R. Kh. Orlov, and S. V. Sukhorukova

UDC 539.3

An extremely strong effect of boundary conditions on the character of damping of the stressed-strained state
in a cylindrical envelope with a free edge under the action of concentrated normal forces transferred through
an elastic frame has been revealed. Thus, under the effect of radial load at a large distance from the free
edge of the envelope, the values of normal displacement and annular bending moment not only decrease on
approaching the free edge but also increase, reaching a maximum value on the free edge of the envelope,
which is in conflict with Saint-Venant’s principle.

1. Modern flying vehicles are usually designed according to the principle of a reinforced monocoque. The fu-
selage of an airplane is a circular or almost circular thin-walled cylinder strengthened by uniformly arranged rings
(frames) and longitudinal rigidity elements (stringers). This, to a large extent, is characteristic of other types of flying
vehicles.

All rigidity elements are positioned on the inner surface of the cylinder such that the outer surface remains
smooth. As a rule, these elements are continuous and longitudinal elements pass through the holes cut in annular ele-
ments. For many years, stresses in the fuselage of the reinforced monocoque type were calculated by the commonly
adopted beam flexural theory, which is based, as is known, on the hypotheses of Euler, Bernoulli, and Navier, accord-
ing to which the cylinder cross sections that are perpendicular to its axis before bending remain the same as after load
application and the shape of the cylinder cross section is not distorted in its plane during loading. In most problems
related to structures with a rigid cross section, for shear stresses and bending the formulas obtained from the elemen-
tary beam theory are rather accurate. Deviation from the results of this theory is most noticeable near the places where
concentrated or localized loads are applied and, by its nature, this deviation has a local character, existing mainly in
the region which in size is comparable with the cross section. The fact that the phenomenon has a local character was
found by B. Saint-Venant [1] and was confirmed by J. N. Goodier [2]. Later, N. J. Hoff [3] and V. L. Salerno [4]
found that the size of the region where the effect of the concentrated force on the reinforced structure of the monoco-
que type manifests itself is comparable with the cylinder diameter.

The phenomena related to deviation from Saint-Venant’s principle not only in thin-walled rods of open con-
tour but also in thin-walled envelopes were mentioned by V. Z. Vlasov in his works where experimental results were
discussed [5]. This prompted the authors of [6] to conduct theoretical and experimental studies of the applicability of
Saint-Venant’s principle to envelopes of zero curvature. On the basis of the semi-zero-moment theory they first ob-
tained results under the effect of force and temperature fields with piecewise-continuous distribution along the genera-
trix and cosinusoidal distribution around the circumference. In this work, we continue consideration of the problem of
the circular cylindrical envelopes affected by concentrated normal forces transferred through an elastic frame that is
rigid to bending in its plane but is elastic from the plane.

2. The stressed-strained state of the envelope is determined by the modified equations of the semi-zero-mo-
ment theory, which, as is known, describe well the so-called basic state of the envelope under the effect of loads with
limited variability along the contour, e.g., loads of the type p(α, β) = p(α) cos nβ, where n < n∗  [7].

The resolving equation for the basic stressed state of the circular cylindrical envelope has the form

Journal of Engineering Physics and Thermophysics, Vol. 78, No. 3, 2005

Moscow State Aviation Institute (Technical University), 4 Volokolamskoe Shosse, Moscow, 125871, Russia.
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 78, No. 3, pp. 163–166, May–June, 2005. Original article submit-
ted January 20, 2004; revision submitted May 29, 2004.

1062-0125/05/7803-0586  2005 Springer Science+Business Media, Inc.586



∂4Φ

∂α4  + 
c

2

1 − ν2 
∂4

∂β4 




∂2

∂β2 + 1




2

 Φ = 0 , (1)

where Φ(α, β) is the resolving function, c2 = h2 ⁄ 12R2.
Displacement, forces, and bending moments are related to the resolving function by differential equations:

u = − 
∂3Φ

∂α∂β2 ,   v = 
∂3Φ

∂β3  ,   w = 
∂4Φ

∂β4  ;

T1 = − 
Eh

R
 

∂4Φ

∂α2∂β2 ;   S = 
Eh

R
 

∂4Φ
∂α3∂β

 ;   G2 = − D 




∂6Φ

∂β6  + 
∂4Φ

∂β4




 ;   G1 = νG2 .

(2)

Here, D is the cylindrical rigidity of the envelope.
The problem of frame bending in its plane can be reduced to solution of the differential equation relative to

radial displacement w(β):
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where EJ is the flexural rigidity of the frame in its plane under the action of radial load P.
Expressing the resolving function Φ(α, β), displacements, forces, and bending moments in terms of the series

over the circumferential coordinate β and formulating the conditions of equality, along the line α = ξ, of the radial
displacement of the frame and the envelope we(ξ, β) = wf, we obtain the solution of the problem posed [8]. For the
shell this solution is written by the method of initial parameters developed by V. Z. Vlasov as applied to calculation
of envelopes under the effect of arbitrary loads. This method is most effective in the case of concentrated and local
loads. We note that the problem of the applicability of this solution in the absence of the frame is not discussed in
either the work mentioned or in the present work. However, if we restrict ourselves to calculation of displacements
only, this solution is of profound interest, since it allows rather accurate description of the strained state of envelopes
under different boundary conditions.

The effect of radial load on the stressed-strained state was analyzed for envelopes of different lengths and
relative thickness under various boundary conditions. Moreover, the frame rigidity varied within a wide range. An ex-

Fig. 1. Variation of normal displacement along the zero generatrix of the enve-
lope (β = 0) under the action of radial concentrated load P transferred at the
center of the envelope (α = x/R = 5) through the elastic frame (J ≠ 0) or di-
rectly to the envelope (J = 0).
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tremely strong influence of the boundary conditions on the character of damping of the stressed-strained state is re-
vealed. At the same time, for example, we know about the complete absence of the effect of boundary conditions on
the length of the zone of damping of a simple boundary effect. Then, under the action of radial load at a large dis-
tance from the free edge of the envelope, values of normal displacement and annular bending moment near the free
edge not only decrease but even increase, reaching a maximum value on the free edge of the envelope. This is rather
clearly demonstrated by the curves in Fig. 1 for the following dimensions of the envelope and frames: R = 0.2 m; R/h
= 100; J = J

_
⋅10−8 m4, where J

_
 is equal to 0, 0.1, 0.5, 1.0, and 2.5.

3. By virtue of the fact that the analysis of structures by the finite-element method is at present the world’s
standard for strength and other types of calculation of structures, it is of interest to make calculations based on the
finite-element method.

The structure is the finite-element model of a circular cylindrical envelope of finite length that at the cen-
ter is strengthened by an elastic frame via which a radial concentrated force is transferred. The envelope model
consists of 544 elements of the Plate type and 533 nodes, the material is steel with the Young module E = 2⋅104

daN/mm2, the thickness is h = 2 mm, the length is 4000 mm, and the radius is 2000 mm. The frame model has
32 elements of the Beam type, and the material is steel. Two versions of the size of the rectangular cross section
of the frame were considered: height along the radius — 40 and 8 mm, width — 2 mm. Three types of boundary
conditions of envelopes were realized: a free edge, a hinge-fixed edge, and a rigidly pinched edge. In this case,
one envelope has a free edge (x = 0) and a rigidly pinched edge (x = 1); in the other envelope, both edges are
hinge fixed. Results of the calculation of the radial displacement for them are given in Fig. 2 in the form of
curves 1 and 2 (free and rigidly pinched edges) and curve 3 (two hinge-fixed edges). The ratio of the normal dis-
placement in the current cross section x/R to the maximum value of displacement w

__
 = w(x/R)/max w is plotted on

the ordinate axis. Curve 1 refers to the case where the concentration load is transferred to the envelope via the
frame with a height of 40 mm and curve 2 — where the load acts through the frame having a height of 8 mm.
Correspondingly, in the first case, the displacement has a maximum value on the free edge of the envelope and in
the second case, at the center in the place of force action. In the same figure, curve 3 gives similar information
for the same envelope but with both edges being hinge fixed. The concentrated load is transferred to this envelope
at the center via the frame, as is the case with the first envelope. The principal difference in the behavior of
curves 1 and 2 and curve 3 is quite obvious.

Thus, information obtained by the finite-element model confirms the conclusions drawn on the basis of the
analytical solution.

Fig. 2. Influence of the boundary conditions of the envelopes and the rigidity
of the frames on the character of the behavior on normal displacement w

__
 along

the zero generatrix (β = 0) under the action of a radial concentrated force P
through the frame at the center of the envelope: 1 and 2) envelope with a free
edge and a rigidly pinched edge; 3) envelope with both edges hinge fixed.
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NOTATION

E, elasticity modules of the envelope material, daN/mm2; h, envelope thickness, mm; J, moment of inertia of
the frame cross section, mm4; l, envelope length, mm; n, number of the harmonic; P, radial concentrated force trans-
ferred to the envelope through the frame, N; p, distributed radial load to the envelope daN/mm2; R, envelope radius,
mm; x, longitudinal coordinate in the envelope, mm; α, dimensionless longitudinal coordinate; β, dimensionless cir-
cumferential coordinate; ν, Poisson coefficient of the envelope material. Indices: e, envelope; f, frame.
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